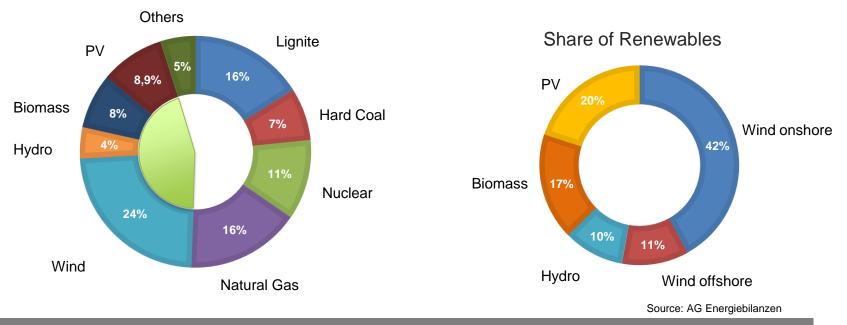


Flexibility is Key in Germany's Energy System Dr. Claudia Weise September 2021

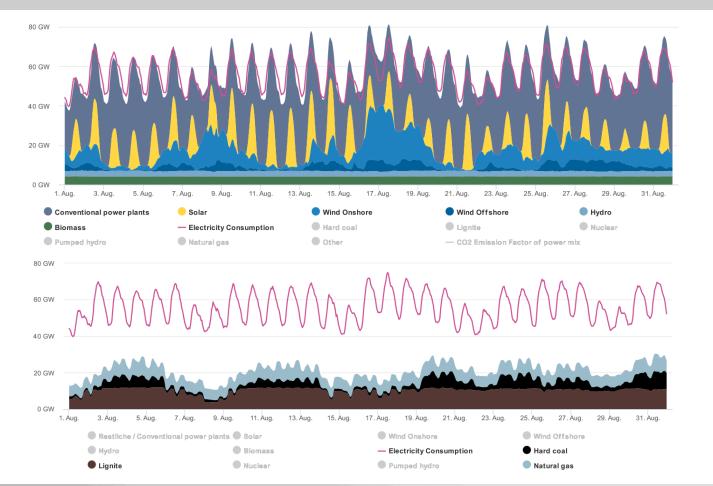
1. Electricity Mix

- 2. Energy Market Design
- 3. Flexible Thermal Power Plants
- 4. Outlook and Perspectives
- 5. Key Take Aways



German Power Generation in 2020

Gross generation: Installed capacity: Import/Export: 574 TWh 229 GW, 128 GW Renewables 23.6 TWh/48.8 TWh (2019)

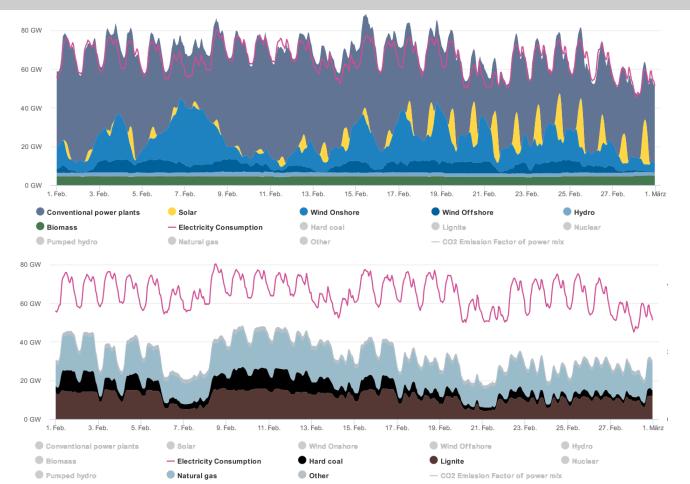


The share of renewables accounted for almost 45 per cent in gross electricity generation – wind is the main energy source.

Generation Mix in Summer

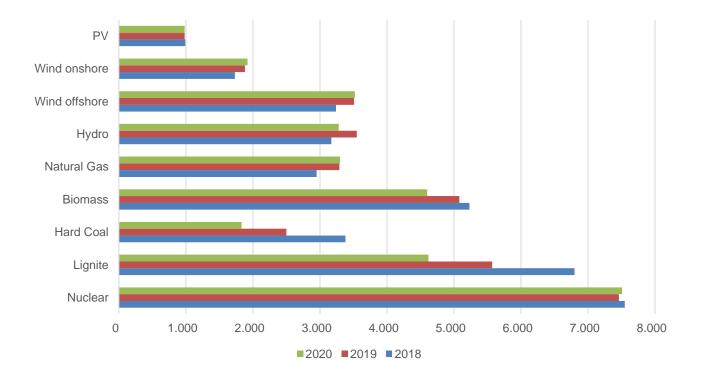
August 2021

Source: Agorameter


VGB PowerTech e.V. | SLIDE 4

and the second second

Generation Mix in Winter


February 2021

Source: Agorameter

VGB PowerTech e.V. | SLIDE 5

Data source: BDEW

- 1. Electricity Mix
- 2. Energy Market Design
- 3. Flexible Thermal Power Plants
- 4. Outlook and Perspectives
- 5. Key Take Aways

Non-market – security of supply

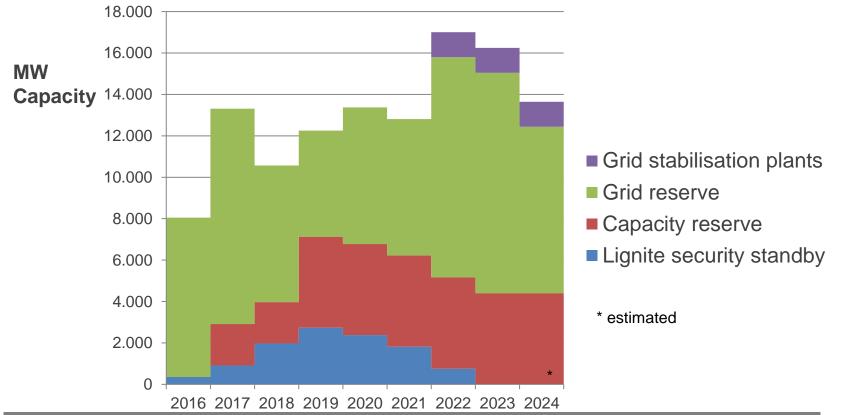
Grid reserve

Capacity reserve

Grid stabilisation plants

Safety disposition (security standby

Market Design in Germany


Area	Energy	Congestion management	Balancing power	Other ancil- lary services	Capacity
Market products	 exchange spot market with day ahead products and intraday tra- ding in 15- min. blocks OTC (over the counter) 		 primary control secondary control Minute reserve sheddable loads 		
Non-market measures		 redispatch of conv. plants reserve plants curtailment of VRE 		 reactive power black start capability/ power system restoration 	 additional capacity/ +safety disposition
Involved disp. gen. capacity	~ 86.4 GW (conventional)	~ 5.9 GW	7,400 MW	~ 30,000 MW (demand for reactive power)	~ 5,000 MW

Source: Bundesnetzagentur, Monitoring-Bericht 2020

Market Design in Germany

German politics favors Energy Only Market. In order to ensure system stability and capacity adequacy different reserve mechanisms are in place.

- 1. Electricity Mix
- 2. Energy Market Design
- 3. Flexible Thermal Power Plants
- 4. Outlook and Perspectives
- 5. Key Take Aways

Flexibility of Dispatchable Generation

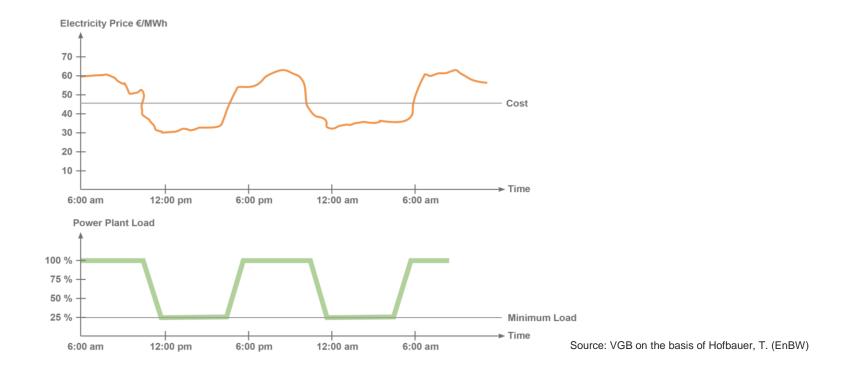
Low Minimum load

- important for the provision of residual load and for fast start up in case of high demand (e.g. two-shifting)
- more economic than shutdown of the whole plant

High ramp rates

- high ramp rates ensure a fast reaction to changed market condition
- power plants with dynamic behaviour can participate in different markets

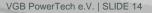
Short start-up and shutdown time


- short start-up and showdown times are beneficial to reduce cost
- thermal stress during start/stop is most severe w.r.t. life-time consumption

Flexible operation aims at achieving low minimum load, high ramp rates and fast start and stop time. Measures might contribute to one or more targets.

Minimum Load Operation in an Energy-Only-Market

In an energy-only-market with high shares of variable renewables flexible operation is essential for the economic viability of the plant.



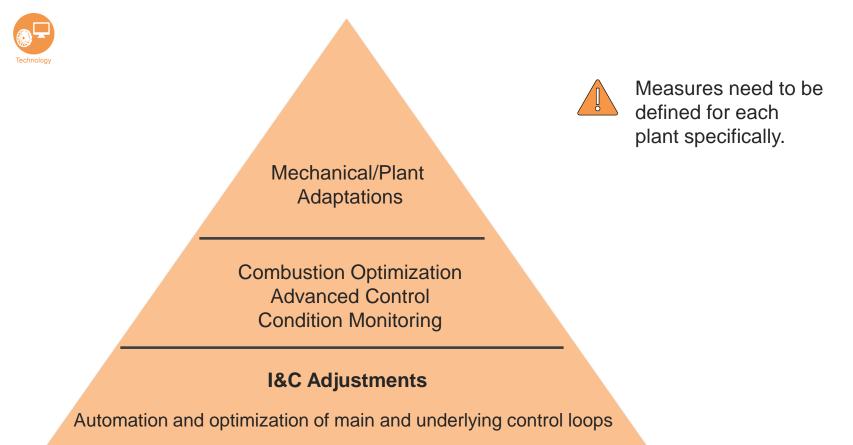
Plant type	Hard Coal	Lignite	CCGT
Ramp rate [% / min]	2/4/9	2/4/8	4/8/12
in the load range [%]	40 to 90	50 to 90	40* to 90
Minimum load [%]	40 / 25 / 10	60 / 40 / 20	50 / 40 / 30*
Start-up time hot start <8 h [h]	3/2/1	6/4/2	1.5 / 1 / 0.5
Start-up time cold start >48 h [h]	7/4/2	8/6/3	3/2/1

Source: VDE and own studies

Conservative / state of the art / very advanced; *as per emission limits for NO_x and CO CCGT = Combined Cycle Gas Turbine Plant

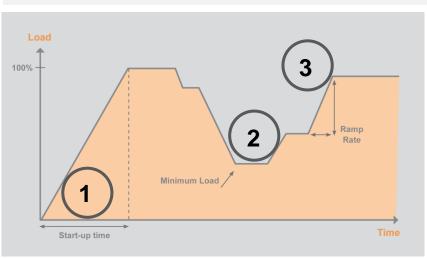
- > Ensure proper instrumentation and condition monitoring
- Implementation of advanced control
- > Adjustment of the key components or systems
- Replacement of components or systems

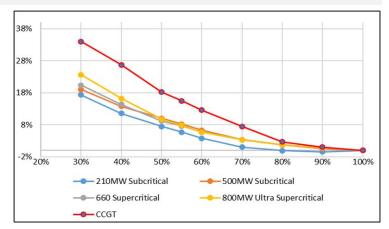
- Implement preservation concepts
- Adjustment of maintenance strategies
- Adjustment of shiftplanning and staffing
- Re-assessment of coalsupply and by product strategies



- Raise awareness for the need of flexibility
- Familiarize staff with new requirements arising from flexible operation
- Long-term training strategies for all types of personnel

Measures for Flexible Operation



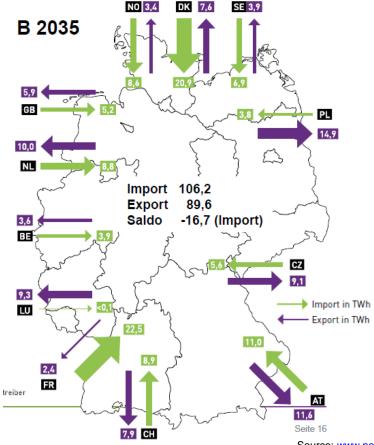


O&M Cost

Main O&M cost levers: fuel, personal and spare parts

Heat Rate Increase during Part/Minimum Load Operation Sinha, Anjan: Recipe Book for the Flexibilization of Coal Fired Power Plants

- (1) Start-up costs: The costs of start-up fuel and auxiliary power form a significant part of the total costs of cycling.
- (2) Minimum load operation implies reduced efficiency resp. higher heat rates in part load operation which cause an increase in specific fuel consumption.
- (3) Ramping and cycling increase thermal-mechanical stress on the equipment and thus require intensive inspection and monitoring.


- 1. Electricity Mix
- 2. Energy Market Design
- 3. Flexible Thermal Power Plants
- 4. Outlook and Perspectives
- 5. Key Take Aways

Grid Expansion Plan until 2035

Assumptions:

Increase of Gross Electricity Demand: 650–700 TWh (+100–150 TWh)

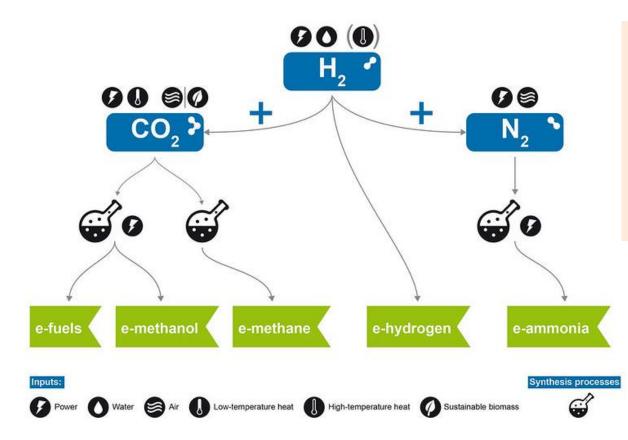
Share of Renewables: 73 to 77 % mainly PV, off- and onshore wind

Conventional Power Plants: 3 GW coal in one scenario, 40 GW+ gas; highly flexible

 CO_2 -Emissions: max. 120 Mio. t CO_2 in 2035 und max. 60 Mio. t CO_2 in 2040

Projections outlined in the grid expansion plan Scenario B 2035

Biomass_Hydrq^{_Misc.} renew. Natural Gas Misc. conv. Pump Storage Wind offshore PV Wind onshore


Installed capacity in GW

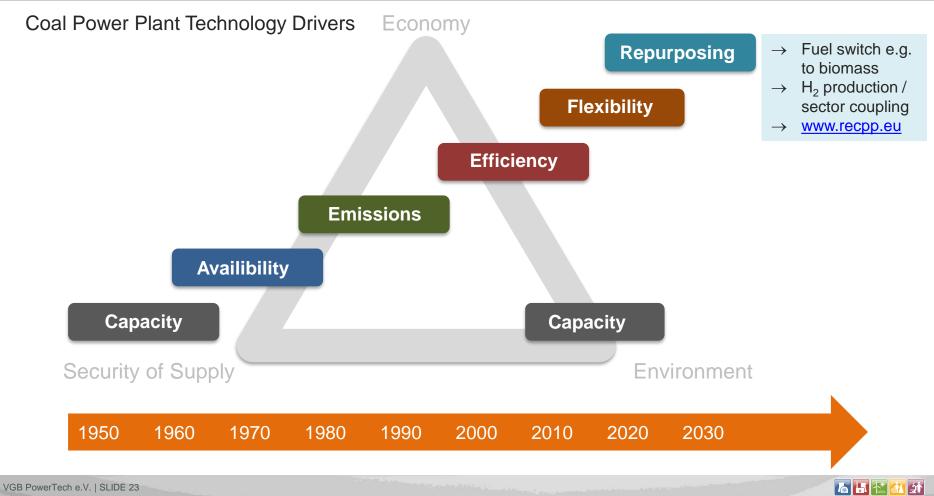
Natural Gas	42.4
Misc. conv.	5.1
Pump Storage	10.2
Wind offshore	30.0
Wind onshore	86.8
PV	117.8
Biomass	7.5
Hydro	5.6
Misc. renew.	1.3
Sum	306.7

Source: <u>www.netzentwicklungsplan.de</u>

Power-to-X

- As of today appr.
 100 MW H₂ production capacity
- National Hydrogen Strategy issued in 2020: H₂ production capacity target of up to 5 GW

Source: Öko-Institut https://www.oeko.de/en/researchconsultancy/issues/mobility-andtransport/electricity-based-fuelsthe-future-of-ptx


- 1. Electricity Mix
- 2. Energy Market Design
- 3. Flexible Thermal Power Plants
- 4. Outlook and Perspectives
- 5. Key Take Aways

💿 🔚 🔛 🏠

Key Take Aways

- Germany is continuously increasing the share of wind and PV – nuclear and coal based generation will be phased out.
- \checkmark Flexibility in the energy system is a must-have.
- ✓ Germany relies on an energy-only market.
- Natural gas is supposed to function as a bridging energy carrier.
- Energy storage and hydrogen-based sector coupling will play a key role in the future energy system.

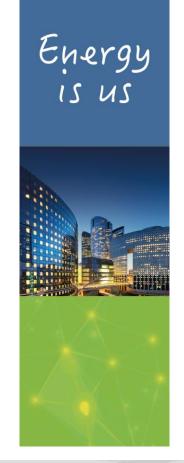
Thank you very much for your interest!

Contact:

Dr. Claudia Weise

Project Director of International Affairs

Deilbachtal 173


45257 Essen (Germany)

Phone: +49 201 8128 335

Mobile: +49 151 2524 8343

claudia.weise@vgb.org

www.vgb.org

