

das Bundesprogramm

Species protection through environmentally friendly lighting

Birte Saathoff, Prof. Stephan Völker | 20.07.2021

Image source: Rainer Stock / Loss of the Night Network 2016

Agenda

- Short introduction
- Motivation
- Requirements
- Research Condition and Method
- Conclusion

Project AuBe

Protection of species through environmentally friendly lighting

Motivation

Obtrusive light and light pollution has a big impact on our environment and the whole ecosystem.

© Wikimedia View_of_the_summer_sunset_from_Sunset_Beach,_Cape_Town.jpg

© HTTPS://WWW.BIENENRETTER.DE/HILF-DEN-BIENEN/LICHTVERSCHMUTZUNG/

- \rightarrow Artifical light among other factors causes:
 - Insect decline
 - Fragmentation of their habitats
 - Imbalance of our ecosystem

Species protection through environmentally friendly lighting| Birte Saathoff | 20.07.2021 Slide 4 | Motivation

Motivation

Attract attention and reach the public:

There are NO ecological benefits of artificial light at night

© GIZ ZA Marlett Balmer

Species protection through environmentally friendly lighting Birte Saathoff | 20.07.2021 Slide 5 | Motivation

Motivation

- Many animals are nocturnal
 - 28% of vertebrates (31% primates)
 - 64% of invertebrates

[1]

• 2/3 of crops and 80% of wild plants are pollinated by insects

Species protection through environmentally friendly lighting| Birte Saathoff | 20.07.2 Slide 5 | Motivation

Motivation & aim of the project

Developing an optimized luminous intensity distribution for street luminaire considering street safety **AND** ecological aspects

	Minimization of the attraction radius	
	of insects Reduction of the barrier effect of	
	flying insects	
	Optimal illumination of the	
	assessment area	
	Considering road safety according to	
Common Decign in	the requirements of DIN standards	Now Ontimized Dec

Common Design in Parks/Green Areas in Germany

New Optimized Design

Species protection through environmentally friendly lighting| Birte Saathoff | 20.07.2021 Slide 7 | Motivation

Requirements

Ecological

• As little light as possible!

© LiTG 12.3

Requirements

Ecological

- As little light as possible!
 - \rightarrow No upwards sky brightening (ULOR = 0)
 - → Minimum luminous flux into adjacent areas
 / facades / Narrow light distributions
 - \rightarrow CCT: max. 3000 K
- \rightarrow Luminaire shouldn't be "visible" for insects \rightarrow Optimal Reduction of Light Pollution

[©] LiTG 12.3

Requirements For Traffic and Pedestrian Safety?

	bei troc	Fahrbahnle kener bzw. nass	Physiologische Blendung	Beleuchtung der Umgebung			
Klasse	tre	ockene Zuständ	e	nass	trockene Zustände	trockene Zustände	
	<i>L</i> [Minimaler Wartungswert] cd·m ^{2 N1}	U _o [Mindestwert]	U _l ^a [Mindestwert]	U _{ow} ^b [Mindestwert]	f _{TI} ^c [Höchstwert] %	R _{EI} d [Mindestwert]	
M1	2,00	0,40	0,70	0,15	10	0,35	
M2	1,50	0,40	0,70	0,15	10	0,35	
M3	1,00	0,40	0,60	0,15	15	0,30	
M4	0,75	0,40	0,60	0,15	15	0,30	
M5	0,50	0,35	0,40	0,15	15	0,30	
M6	0,30	0,35	0,40	0,15	20	0,30	

Tabelle 1 — M-Beleuchtungsklassen

© Beuth Verlag, DIN EN 13201-2:2016

Species protection through environmentally friendly lighting| Birte Saathoff | 20.07.2021 Slide 9 | Requirements

Requirements For Traffic and Pedestrian Safety?

Klasse	Horizontale Beleuch	tungsstärke
	E [minimaler Wartungswert] lx	U _o [Mindestwert]
CO	50	0,40
C1	30	0,40
C2	20,0	0,40
C3	15,0	0,40
C4	10,0	0,40
C5	7,50	0,40

© Beuth Verlag, DIN EN 13201-2:2016

Species protection through environmentally friendly lighting| Birte Saathoff | 20.07.2021 Slide 9 | Requirements

Requirements For Traffic and Pedestrian Safety?

		Klasse	Horizontale Bel	euchtungsstärke	Zusätzliche Anforderungen falls Gesichtserkennung erforderlich ist		
Г	Tal		Ē ^a [minimaler Wartungswert]	E _{min} [Wartungswert]	E _{v,min} [Wartungswert]	E _{sc,min} [Wartungswert]	
	Kla		lx	lx	lx	lx	
	ſ	P1	15,0	3,00	5,0	5,0 ^{N2}	
		P2	10,0	2,00	3,0	2,0	
	С	P3	7,50	1,50	2,5	1,5	
	С	P4	5,00	1,00	1,5	1,0	
	С	P5	3,00	0,60	1,0	0,6	
	С	P6	2,00	0,40	<mark>0,</mark> 6	0,2 ^{N2}	
-	C C	P7	unbestimmte Anforderung	unbestimmte Anforderung			

© Beuth Verlag, DIN EN 13201-2:2016

Species protection through environmentally friendly lighting| Birte Saathoff | 20.07.2021 Slide 9 | Requirements

Requirements

For Traffic and Pedestrian Safety

- Overall uniformity $U_{o}\uparrow$
- Visibility level VL ↑
- Glare ↓
- Vertical illumination for face recognition E_{sc,min}
- Perception of safety, edge illumination ratio EIR

© TU Berlin

4 Project Areas / Municipalities all over Germany

- (future) Star Park Regions
- Exposure to water / aquatic insects
- Parks or traffic-calmed streets (mostly P4)
- New light installations are planned

4 Project Areas / Municipalities all over Germany

- Different current street ligthing (HPS & Mercury vapour lamps)
- Different Pole distance / Pole height Ratio

	Street	Pole			
Project area	width	Height (h)	Distance (d)	Ratio d/h	
Krakow am See	2.7 m	3.44 m	25 m	7.3	
Neuglobsow	4.0 m	3.30 m	30 m	9.1	
Gülpe	5.4 m	4.40 m	30 m	4.8	
Fulda	2.8 m	4.33 m	50 m	11.6	

Species protection through environmentally friendly lighting| Birte Saathoff | 20.07.2021 Slide 12 | Research Condition and Method

Research Condition and Method For Traffic and Pedestrian Safety

Large pole distance: bad uniformity

Small pole distance: good uniformity

 \rightarrow Ideal Pole height / Pole distance ratio : 1/4

Result: not just the luminaire but also the geometries are relevant for a good ecological and traffic safety lighting

Experimental Field

Pole height / Pole distance ratio : 1/4

Species protection through environmentally friendly lighting| Birte Saathoff | 20.07.2021

© TU Berlin

berlin

Slide 14 | Research Condition and Method

Light Distribution Curve Simulation / Experimental Field

• Street width 2,5 m

Results: Lighting Class P4

E _{ave}	5,01 lx	\checkmark
E _{min}	4,94 lx	\checkmark
Uo	0,99	\checkmark
ті	4,00	\checkmark

Research Condition and Method

Light Distribution Curve from Manufacturer / Experimental Field

• Street width 2,5 m

 U_{O}

ΤI

0,78

28

 \checkmark

X

Species protection through environmentally friendly lighting| Birte Saathoff | 20.07.2021 Slide 16 | Research Condition and Method

Research Condition and Method

Light Distribution Curve from Manufacturer / Experimental Field

• Street width 2,5 m

Species protection through environmentally friendly lighting| Birte Saathoff | 20.07.2021 Slide 17 | Research Condition and Method

Light Distribution Curve from Manufacturer / Experimental Field

• Street width 2,5 m

Species protection through environmentally friendly lighting| Birte Saathoff | 20.07.2021 Slide 17 | Research Condition and Method

- For the project:
 - Design of a perfect environmentally friendly luminare
 - Using a cover for glare protection
 - Adaptable for `every` luminare ?
 - Simulation in LightTools of new optics/ lenses
 - Analysis of the prototype on the experimental field

- In general:
 - Analysis of the current situation (traffic / safety / ecological exposure ...)
 - Static insectfriendly light: precise lighting design before installation
 - Minimizing the luminous flux \rightarrow Energy saving
 - The technically and ecologically set requirements serve as orientation for new Municipalities / Luminaire manufacturer / Lighting designers
 - Alternatives: Dynamic Street Lighting

Thank you!

Contact: Fachgebiet Lichttechnik Einsteinufer 19 10587 Berlin http://www.li.tu-berlin.de

Birte Saathoff	
birte.saathoff@tu-berlin.de	
+49 30 314 - 29183	

Stephan Völker – Fachgebietsleitung	
-------------------------------------	--

stephan.voelker@tu-berlin.de

+49 30 314 - 79790

Species protection through environmentally friendly lighting| Birte Saathoff | 20.07.2021 Slide 20

Project homepage: https://www.tatort-strassenbeleuchtung.de/

[1] Schroer, S., Huggins, B., Böttcher, M. & Hölker, F. (2019) Leitfaden zur Neugestaltung und Umrüstung von Außenbeleuchtungsanlagen – Anforderungen an eine nachhaltige Außenbeleuchtung. - BfN-Skripten 543.

[2] https://www.welt.de/wissenschaft/plus232343029/Krise-der-Artenvielfalt-Warum-Insekten-und-andere-Tiere-weltweit-sterben.html?notify=success_subscription#Comments

